cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362305 a(n) = n! * Sum_{k=0..floor(n/3)} (-n)^k * binomial(n-2*k,k)/(n-2*k)!.

This page as a plain text file.
%I A362305 #16 Feb 16 2025 08:34:05
%S A362305 1,1,1,-17,-95,-299,12241,122011,642433,-41645015,-597247199,
%T A362305 -4407324569,390913189921,7315513279933,69439658097265,
%U A362305 -7816418805235949,-180448412456686079,-2093964182367814319,285679499679525805633,7844019340520912230495
%N A362305 a(n) = n! * Sum_{k=0..floor(n/3)} (-n)^k * binomial(n-2*k,k)/(n-2*k)!.
%H A362305 Winston de Greef, <a href="/A362305/b362305.txt">Table of n, a(n) for n = 0..402</a>
%H A362305 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A362305 a(n) = A362302(n,6*n).
%F A362305 a(n) = n! * [x^n] exp(x - n*x^3).
%F A362305 E.g.f.: exp( ( LambertW(3*x^3)/3 )^(1/3) ) / (1 + LambertW(3*x^3)).
%o A362305 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp((lambertw(3*x^3)/3)^(1/3))/(1+lambertw(3*x^3))))
%Y A362305 Cf. A362301, A362302.
%K A362305 sign
%O A362305 0,4
%A A362305 _Seiichi Manyama_, Apr 15 2023