This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362308 #16 Dec 21 2023 02:58:58 %S A362308 1,0,1,0,2,1,0,10,4,1,0,74,24,6,1,0,706,188,42,8,1,0,8162,1808,350,64, %T A362308 10,1,0,110410,20628,3426,568,90,12,1,0,1708394,273064,38886,5696,850, %U A362308 120,14,1 %N A362308 Triangle read by rows. Number of perfect matchings by number of connected components. %C A362308 The exact definition is given in Sokal and Zeng. See section 4.4 and theorem 4.6. %H A362308 Alan D. Sokal and Jiang Zeng, <a href="https://doi.org/10.1016/j.aam.2022.102341">Some multivariate master polynomials for permutations, set partitions, and perfect matchings, and their continued fractions</a>, Advances in Applied Mathematics, Volume 138, 2022. Table on p. 91. %H A362308 Wikipedia, <a href="https://en.wikipedia.org/wiki/Perfect_matching">Perfect matching</a>. %F A362308 T(n, k) = T(n, k-1) - T(n-1, k-2) - (2*n - k - 1)/(k - 1) * T(n - 1, k - 1) for k > 1. - _Detlef Meya_, Dec 21 2023 %e A362308 Table T(n, k) begins: %e A362308 [0] 1; %e A362308 [1] 0, 1; %e A362308 [2] 0, 2, 1; %e A362308 [3] 0, 10, 4, 1; %e A362308 [4] 0, 74, 24, 6, 1; %e A362308 [5] 0, 706, 188, 42, 8, 1; %e A362308 [6] 0, 8162, 1808, 350, 64, 10, 1; %e A362308 [7] 0, 110410, 20628, 3426, 568, 90, 12, 1; %e A362308 [8] 0, 1708394, 273064, 38886, 5696, 850, 120, 14, 1; %Y A362308 Cf. A001147 (row sums), A000698 (indecomposable perfect matchings), A177797. %Y A362308 T(n,0) = A000007(n), T(n,1) = A000698(n) assuming offset 1. %K A362308 nonn,tabl,more %O A362308 0,5 %A A362308 _Peter Luschny_, Apr 15 2023