cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362308 Triangle read by rows. Number of perfect matchings by number of connected components.

This page as a plain text file.
%I A362308 #16 Dec 21 2023 02:58:58
%S A362308 1,0,1,0,2,1,0,10,4,1,0,74,24,6,1,0,706,188,42,8,1,0,8162,1808,350,64,
%T A362308 10,1,0,110410,20628,3426,568,90,12,1,0,1708394,273064,38886,5696,850,
%U A362308 120,14,1
%N A362308 Triangle read by rows. Number of perfect matchings by number of connected components.
%C A362308 The exact definition is given in Sokal and Zeng. See section 4.4 and theorem 4.6.
%H A362308 Alan D. Sokal and Jiang Zeng, <a href="https://doi.org/10.1016/j.aam.2022.102341">Some multivariate master polynomials for permutations, set partitions, and perfect matchings, and their continued fractions</a>, Advances in Applied Mathematics, Volume 138, 2022. Table on p. 91.
%H A362308 Wikipedia, <a href="https://en.wikipedia.org/wiki/Perfect_matching">Perfect matching</a>.
%F A362308 T(n, k) = T(n, k-1) - T(n-1, k-2) - (2*n - k - 1)/(k - 1) * T(n - 1, k - 1) for k > 1. - _Detlef Meya_, Dec 21 2023
%e A362308 Table T(n, k) begins:
%e A362308   [0] 1;
%e A362308   [1] 0,       1;
%e A362308   [2] 0,       2,      1;
%e A362308   [3] 0,      10,      4,     1;
%e A362308   [4] 0,      74,     24,     6,    1;
%e A362308   [5] 0,     706,    188,    42,    8,   1;
%e A362308   [6] 0,    8162,   1808,   350,   64,  10,   1;
%e A362308   [7] 0,  110410,  20628,  3426,  568,  90,  12,  1;
%e A362308   [8] 0, 1708394, 273064, 38886, 5696, 850, 120, 14, 1;
%Y A362308 Cf. A001147 (row sums), A000698 (indecomposable perfect matchings), A177797.
%Y A362308 T(n,0) = A000007(n), T(n,1) = A000698(n) assuming offset 1.
%K A362308 nonn,tabl,more
%O A362308 0,5
%A A362308 _Peter Luschny_, Apr 15 2023