This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362310 #32 May 21 2023 09:47:06 %S A362310 2,5,8,9,11,12,15,20,50,75,80,90,95,96,98,99,101,102,104,105,110,120, %T A362310 125,150,200,500,750,800,875,900,950,960,975,980,990,992,995,996,998, %U A362310 999,1001,1002,1004,1005,1008,1010,1020,1025,1040,1050,1100,1125,1200,1250,1500,2000 %N A362310 Irregular triangle read by rows (row length A056220). Row n lists the integer solutions for x in the equation x - 10^n = x/y (x and y are integers). %F A362310 Sum of row n = 2*(n+1)^2*10^n. %F A362310 T(n, k) = 10^n - A056538(10^n, k+2), k < (n+1)^2-1. %F A362310 T(n, k) = 10^n + A027750(10^n, k+2 - (n+1)^2), (n+1)^2-2 < k < 2*(n+1)^2-1. %e A362310 Triangle begins: %e A362310 2 %e A362310 5, 8, 9, 11, 12, 15, 20 %e A362310 50, 75, 80, 90, 95, 96, 98, 99, 101, 102, 104, 105, 110, 120, 125, 150, 200 %e A362310 ... %e A362310 Corresponding values for y in the equation: %e A362310 2 %e A362310 -1,-4,-9, 11, 6, 3, 2 %e A362310 -1,-3,-4,-9,-19,-24,-49,-99, 101, 51, 26, 21, 11, 6, 5, 3, 2 %o A362310 (PARI) row(n) = {my(d = divisors(10^n));my(v = concat(vector((n+1)^2,t,10^n)-Vecrev(d),vector((n+1)^2,t,10^n)+d));v[^1]}; %o A362310 (MATLAB) %o A362310 function a = A362310( max_row ) %o A362310 r = 2; a= []; %o A362310 for n = 1:max_row %o A362310 d = divisors(10^(n-1)); %o A362310 a = [a 10^(n-1)-d(end-1:-1:1) 10^(n-1)+d]; %o A362310 end %o A362310 end %Y A362310 Cf. A027750, A056220, A056538, A362311. %K A362310 nonn,tabf,easy %O A362310 0,1 %A A362310 _Thomas Scheuerle_, Apr 15 2023