cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362315 a(n) = n! * Sum_{k=0..floor(n/4)} (-n/4)^k /(k! * (n-4*k)!).

This page as a plain text file.
%I A362315 #17 Feb 16 2025 08:34:05
%S A362315 1,1,1,1,-23,-149,-539,-1469,77281,911737,5657401,25134121,
%T A362315 -2065730039,-35352993389,-310739232803,-1913714425349,
%U A362315 213881558916481,4797269708789041,54560246286936241,429606655679843857,-60718212515535701399,-1684610587476711352709
%N A362315 a(n) = n! * Sum_{k=0..floor(n/4)} (-n/4)^k /(k! * (n-4*k)!).
%H A362315 Winston de Greef, <a href="/A362315/b362315.txt">Table of n, a(n) for n = 0..431</a>
%H A362315 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A362315 a(n) = n! * [x^n] exp(x - n*x^4/4).
%F A362315 E.g.f.: exp( ( LambertW(x^4) )^(1/4) ) / (1 + LambertW(x^4)).
%o A362315 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(x^4)^(1/4))/(1+lambertw(x^4))))
%Y A362315 Cf. A362276, A362304, A362320.
%K A362315 sign
%O A362315 0,5
%A A362315 _Seiichi Manyama_, Apr 15 2023