This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362317 #20 Feb 16 2025 08:34:05 %S A362317 1,1,1,1,5,26,91,246,2801,26650,159601,702406,12479941,172561676, %T A362317 1462655195,8918930476,215370384321,3906667179836,42828875064001, %U A362317 333816101642140,10190496077676901,228789539391769336,3077152545301687931,29203537040556576776 %N A362317 a(n) = n! * Sum_{k=0..floor(n/4)} (n/24)^k /(k! * (n-4*k)!). %H A362317 Seiichi Manyama, <a href="/A362317/b362317.txt">Table of n, a(n) for n = 0..465</a> %H A362317 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>. %F A362317 a(n) = n! * [x^n] exp(x + n*x^4/24). %F A362317 E.g.f.: exp( ( -6*LambertW(-x^4/6) )^(1/4) ) / (1 + LambertW(-x^4/6)). %t A362317 nmax = 30; CoefficientList[PowerExpand[Series[E^((-6*LambertW[-x^4/6])^(1/4)) / (1 + LambertW[-x^4/6]), {x, 0, nmax}]], x] * Range[0, nmax]! (* _Vaclav Kotesovec_, Apr 18 2023 *) %o A362317 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((-6*lambertw(-x^4/6))^(1/4))/(1+lambertw(-x^4/6)))) %Y A362317 Cf. A362173, A362336. %Y A362317 Cf. A351932, A362314. %K A362317 nonn %O A362317 0,5 %A A362317 _Seiichi Manyama_, Apr 16 2023