cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362320 a(n) = n! * Sum_{k=0..floor(n/5)} (-n/5)^k / (k! * (n-5*k)!).

This page as a plain text file.
%I A362320 #16 Feb 16 2025 08:34:05
%S A362320 1,1,1,1,1,-119,-863,-3527,-10751,-27215,7197121,96476689,689534209,
%T A362320 3507486841,14238448225,-5835497948279,-114117547235327,
%U A362320 -1164586980639263,-8296447373407871,-46351121024513375,25734702161134932481,661538303263860440041
%N A362320 a(n) = n! * Sum_{k=0..floor(n/5)} (-n/5)^k / (k! * (n-5*k)!).
%H A362320 Winston de Greef, <a href="/A362320/b362320.txt">Table of n, a(n) for n = 0..434</a>
%H A362320 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A362320 a(n) = n! * [x^n] exp(x - n*x^5/5).
%F A362320 E.g.f.: exp( ( LambertW(x^5) )^(1/5) ) / (1 + LambertW(x^5)).
%o A362320 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(x^5)^(1/5))/(1+lambertw(x^5))))
%Y A362320 Cf. A362276, A362304, A362315.
%K A362320 sign
%O A362320 0,6
%A A362320 _Seiichi Manyama_, Apr 16 2023