cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362322 a(n) = n! * Sum_{k=0..floor(n/4)} (-n)^k / (k! * (n-4*k)!).

This page as a plain text file.
%I A362322 #17 Feb 16 2025 08:34:05
%S A362322 1,1,1,1,-95,-599,-2159,-5879,1276801,14669425,90669601,402407281,
%T A362322 -136515598559,-2275742812199,-19922903656655,-122565283331399,
%U A362322 56538094207096321,1235380139032068961,13993348375743336001,110062069784059565665
%N A362322 a(n) = n! * Sum_{k=0..floor(n/4)} (-n)^k / (k! * (n-4*k)!).
%H A362322 Winston de Greef, <a href="/A362322/b362322.txt">Table of n, a(n) for n = 0..408</a>
%H A362322 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A362322 a(n) = n! * [x^n] exp(x - n*x^4).
%F A362322 E.g.f.: exp( ( LambertW(4*x^4)/4 )^(1/4) ) / (1 + LambertW(4*x^4)).
%o A362322 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp((lambertw(4*x^4)/4)^(1/4))/(1+lambertw(4*x^4))))
%Y A362322 Cf. A362282, A362305, A362324.
%K A362322 sign
%O A362322 0,5
%A A362322 _Seiichi Manyama_, Apr 16 2023