cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A362327 The i-values of pairs (i, j) listed in A362326.

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 2, 3, 5, 0, 1, 2, 4, 5, 6, 0, 1, 2, 5, 6, 7, 0, 2, 6, 8, 0, 1, 2, 3, 6, 7, 8, 9, 0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 0, 2, 3, 5, 6, 8, 9, 11, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
Offset: 1

Views

Author

Rémy Sigrist, Apr 16 2023

Keywords

Comments

See A362328 for the j-values.

Crossrefs

Cf. A362326, A362328 (j-values).

Programs

  • PARI
    is(i, j) = { while (i && j, if (i%3==1 && j%3==1, return (0), i\=3; j\=3;);); return (1); }
    row(ij) = select(i -> is(i, ij-i), [0..ij])

A362326 Pairs (i, j) of nonnegative integers whose ternary expansions have no common digit 1 sorted first by i + j then by i.

Original entry on oeis.org

0, 0, 0, 1, 1, 0, 0, 2, 2, 0, 0, 3, 1, 2, 2, 1, 3, 0, 0, 4, 1, 3, 2, 2, 3, 1, 4, 0, 0, 5, 2, 3, 3, 2, 5, 0, 0, 6, 1, 5, 2, 4, 4, 2, 5, 1, 6, 0, 0, 7, 1, 6, 2, 5, 5, 2, 6, 1, 7, 0, 0, 8, 2, 6, 6, 2, 8, 0, 0, 9, 1, 8, 2, 7, 3, 6, 6, 3, 7, 2, 8, 1, 9, 0, 0, 10
Offset: 1

Views

Author

Rémy Sigrist, Apr 16 2023

Keywords

Comments

This sequence is to Sierpinski carpet what A352909 is to Sierpinski gasket.
There are A293974(n + 1) pairs (i, j) with n = i + j.
See A362329 for the other pairs.

Examples

			The first pairs are:
    (0, 0),
    (0, 1), (1, 0),
    (0, 2), (2, 0),
    (0, 3), (1, 2), (2, 1), (3, 0),
    (0, 4), (1, 3), (2, 2), (3, 1), (4, 0),
    (0, 5), (2, 3), (3, 2), (5, 0),
    (0, 6), (1, 5), (2, 4), (4, 2), (5, 1), (6, 0),
    (0, 7), (1, 6), (2, 5), (5, 2), (6, 1), (7, 0),
    (0, 8), (2, 6), (6, 2), (8, 0),
    ...
		

Crossrefs

Cf. A293974, A352909, A362327 (i-values), A362328 (j-values), A362329 (complement).

Programs

  • PARI
    is(i, j) = { while (i && j, if (i%3==1 && j%3==1, return (0), i\=3; j\=3;);); return (1); }
    row(ij) = apply (i -> [i, ij-i], select(i -> is(i, ij-i), [0..ij]))
Showing 1-2 of 2 results.