This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362333 #8 Mar 22 2024 09:17:11 %S A362333 0,1,1,2,1,1,1,3,2,1,1,2,1,1,1,4,1,2,1,1,1,1,1,3,2,1,3,1,1,1,1,5,1,1, %T A362333 1,2,1,1,1,1,1,1,1,1,2,1,1,4,2,2,1,1,1,3,1,1,1,1,1,1,1,1,1,6,1,1,1,1, %U A362333 1,1,1,3,1,1,2,1,1,1,1,2,4,1,1,1,1,1,1 %N A362333 Least nonnegative integer k such that (gpf(n)!)^k is divisible by n, where gpf(n) is the greatest prime factor of n. %C A362333 First differs from A088388 at n = 40. %F A362333 a(n) > 1 if and only if n is in A057109. %F A362333 a(n) <= A051903(n). %F A362333 a(n) = ceiling(A371148(n)/A371149(n)). - _Pontus von Brömssen_, Mar 16 2024 %e A362333 For n = 12, gpf(n)! = 3! = 6 is not divisible by 12, but (3!)^2 = 36 is divisible by 12, so a(12) = 2. %o A362333 (Python) %o A362333 from sympy import factorint %o A362333 def A362333(n): %o A362333 f = factorint(n) %o A362333 gpf = max(f,default=None) %o A362333 a = 0 %o A362333 for p in f: %o A362333 m = gpf %o A362333 v = 0 %o A362333 while m >= p: %o A362333 m //= p %o A362333 v += m %o A362333 a = max(a,-(-f[p]//v)) %o A362333 return a %Y A362333 Cf. A006530, A051903, A057109, A088388, A371148, A371149, A371151, A371152. %K A362333 nonn %O A362333 1,4 %A A362333 _Pontus von Brömssen_, Apr 16 2023