This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362335 #44 May 28 2023 11:34:13 %S A362335 0,11,10,100,110,112,102,1002,1022,1102,1120,1124,1026,10028,10086, %T A362335 10082,10866,10822,10886,10882,11086,11082,11208,11976,10928,100913, %U A362335 10096,10093,10966,10933,10996,10993,11096,11093,22309,11309,23009,13009,23099,13099,23309 %N A362335 Lexicographically earliest sequence of distinct nonnegative terms wherein every digit of a(n) is the absolute difference of two adjacent digits in a(n+1). %C A362335 All terms > a(24) contain at least one 9 with an adjacent 0. All terms > a(25) contain at least one instance of identical adjacent digits. %H A362335 Michael S. Branicky, <a href="/A362335/b362335.txt">Table of n, a(n) for n = 1..10000</a> %e A362335 a(125) = 9902. The next term is 10097, not 20009, because, in spite of its providing more digit differences than are needed, it is lexicographically earlier. %o A362335 (Python) %o A362335 from itertools import count, islice %o A362335 def c(k, d): %o A362335 dk = list(map(int, str(k))) %o A362335 return set(abs(dk[i+1]-dk[i]) for i in range(len(dk)-1)) >= d %o A362335 def agen(): # generator of terms %o A362335 an, aset = 0, {0} %o A362335 while True: %o A362335 yield an %o A362335 d = set(map(int, set(str(an)))) %o A362335 an = next(k for k in count(10**len(d)) if k not in aset and c(k, d)) %o A362335 aset.add(an) %o A362335 print(list(islice(agen(), 41))) # _Michael S. Branicky_, May 27 2023 %o A362335 def A362335(n, A=[0]): %o A362335 while len(A) <= n: %o A362335 z = lambda a: zip(d := tuple(int(d) for d in str(a)), d[1:]) %o A362335 D = set(str(A[-1])) ; a = 10**len(D) %o A362335 while a in A or D - set(str(abs(x-y)) for x,y in z(a)): a += 1 %o A362335 A . append(a) %o A362335 return A[n] # _M. F. Hasler_, May 27 2023 %o A362335 (PARI) {upto(N) = my(U=[], a=0); vector(N,n, if(n>1, my(da=Set(if(a,digits(a)))); a=10^#da; while( setsearch(U,a) || #setminus(da, Set(abs((n=digits(a))[^1]-n[^-1]))), a++)); U=setunion(U,[a]); a)} \\ _M. F. Hasler_, May 27 2023 %K A362335 nonn,base %O A362335 1,2 %A A362335 _Eric Angelini_ and _Hans Havermann_, May 27 2023 %E A362335 a(27) and beyond from _Michael S. Branicky_, May 27 2023