cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362336 a(n) = n! * Sum_{k=0..floor(n/5)} (n/120)^k /(k! * (n-5*k)!).

This page as a plain text file.
%I A362336 #26 Feb 16 2025 08:34:05
%S A362336 1,1,1,1,1,6,37,148,449,1135,15121,172789,1207009,6106816,24748725,
%T A362336 510855346,8524169473,84981641837,602009065729,3357322881625,
%U A362336 93871272204481,2059974308136466,26683062726210661,243032907824598816,1725747644222610625
%N A362336 a(n) = n! * Sum_{k=0..floor(n/5)} (n/120)^k /(k! * (n-5*k)!).
%H A362336 Seiichi Manyama, <a href="/A362336/b362336.txt">Table of n, a(n) for n = 0..484</a>
%H A362336 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A362336 a(n) = n! * [x^n] exp(x + n*x^5/120).
%F A362336 E.g.f.: exp( ( -24*LambertW(-x^5/24) )^(1/5) ) / (1 + LambertW(-x^5/24)).
%o A362336 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((-24*lambertw(-x^5/24))^(1/5))/(1+lambertw(-x^5/24))))
%Y A362336 Cf. A362173, A362317.
%Y A362336 Cf. A275423, A362319, A362323.
%K A362336 nonn
%O A362336 0,6
%A A362336 _Seiichi Manyama_, Apr 16 2023