cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362345 a(n) = n! * Sum_{k=0..floor(n/4)} (-n/24)^k /(k! * (n-4*k)!).

This page as a plain text file.
%I A362345 #13 Feb 16 2025 08:34:05
%S A362345 1,1,1,1,-3,-24,-89,-244,1681,24382,155401,695146,-7490339,-157336464,
%T A362345 -1421454033,-8817579224,129268310081,3555528110716,41578411339441,
%U A362345 329824291072252,-6116622750516899,-207991913454970784,-2985298421745508329
%N A362345 a(n) = n! * Sum_{k=0..floor(n/4)} (-n/24)^k /(k! * (n-4*k)!).
%H A362345 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A362345 a(n) = n! * [x^n] exp(x - n*x^4/24).
%F A362345 E.g.f.: exp( ( 6*LambertW(x^4/6) )^(1/4) ) / (1 + LambertW(x^4/6)).
%o A362345 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((6*lambertw(x^4/6))^(1/4))/(1+lambertw(x^4/6))))
%Y A362345 Cf. A362303, A362346.
%Y A362345 Cf. A351930.
%K A362345 sign
%O A362345 0,5
%A A362345 _Seiichi Manyama_, Apr 16 2023