cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362346 a(n) = n! * Sum_{k=0..floor(n/5)} (-n/120)^k /(k! * (n-5*k)!).

This page as a plain text file.
%I A362346 #15 Feb 16 2025 08:34:05
%S A362346 1,1,1,1,1,-4,-35,-146,-447,-1133,10081,162625,1188001,6073354,
%T A362346 24692669,-340585244,-8007557375,-83565282891,-598436312543,
%U A362346 -3348919070207,62583951520321,1933207863670000,26224985071994941,241528060568764586,1721188205642283841
%N A362346 a(n) = n! * Sum_{k=0..floor(n/5)} (-n/120)^k /(k! * (n-5*k)!).
%H A362346 Winston de Greef, <a href="/A362346/b362346.txt">Table of n, a(n) for n = 0..483</a>
%H A362346 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A362346 a(n) = n! * [x^n] exp(x - n*x^5/120).
%F A362346 E.g.f.: exp( ( 24*LambertW(x^5/24) )^(1/5) ) / (1 + LambertW(x^5/24)).
%o A362346 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((24*lambertw(x^5/24))^(1/5))/(1+lambertw(x^5/24))))
%Y A362346 Cf. A362303, A362345.
%Y A362346 Cf. A351931.
%K A362346 sign
%O A362346 0,6
%A A362346 _Seiichi Manyama_, Apr 16 2023