This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362350 #17 Feb 16 2025 08:34:05 %S A362350 1,1,2,4,19,71,601,3277,39089,277489,4250341,37110701,693581197, %T A362350 7184750509,158461520309,1899055549861,48269252293201,656869268651537, %U A362350 18903165795857089,287927838327392929,9252988524143245181,155954097639111859501 %N A362350 a(n) = n! * Sum_{k=0..floor(n/2)} (k/2)^k / (k! * (n-2*k)!). %H A362350 Winston de Greef, <a href="/A362350/b362350.txt">Table of n, a(n) for n = 0..437</a> %H A362350 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>. %F A362350 E.g.f.: exp(x) / (1 + LambertW(-x^2/2)). %F A362350 a(n) ~ (exp(2^(3/2)*exp(-1/2)) + (-1)^n) * n^n / (2^((n+1)/2) * exp(n/2 + sqrt(2)*exp(-1/2))). - _Vaclav Kotesovec_, Apr 18 2023 %o A362350 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x)/(1+lambertw(-x^2/2)))) %Y A362350 Cf. A362351, A362352. %Y A362350 Cf. A277614. %K A362350 nonn %O A362350 0,3 %A A362350 _Seiichi Manyama_, Apr 17 2023