cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362352 a(n) = n! * Sum_{k=0..floor(n/4)} (k/24)^k / (k! * (n-4*k)!).

This page as a plain text file.
%I A362352 #16 Feb 16 2025 08:34:05
%S A362352 1,1,1,1,2,6,16,36,211,1387,6511,23431,225721,2207921,14610597,
%T A362352 71848141,958259121,12403693681,105819536881,659686502257,
%U A362352 11235532306021,180826378073461,1888306425160541,14256573124903341,295428115205647117,5683724892725141901
%N A362352 a(n) = n! * Sum_{k=0..floor(n/4)} (k/24)^k / (k! * (n-4*k)!).
%H A362352 Seiichi Manyama, <a href="/A362352/b362352.txt">Table of n, a(n) for n = 0..494</a>
%H A362352 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A362352 E.g.f.: exp(x) / (1 + LambertW(-x^4/24)).
%F A362352 a(n) ~ (exp(2^(3/4)*3^(1/4)*exp(-1/4)) + (-1)^n/exp(2^(3/4)*3^(1/4)*exp(-1/4)) + 2*cos(2^(3/4)*3^(1/4)*exp(-1/4) - Pi*n/2)) * n^n / (2^(3*n/4 + 1) * 3^(n/4) * exp(3*n/4)). - _Vaclav Kotesovec_, Apr 18 2023
%o A362352 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x)/(1+lambertw(-x^4/24))))
%Y A362352 Cf. A362350, A362351.
%Y A362352 Cf. A362317.
%K A362352 nonn
%O A362352 0,5
%A A362352 _Seiichi Manyama_, Apr 17 2023