cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362359 Triangle T read by rows, obtained from the array A for the solutions of the Monkey and Coconuts Problem (s sailors and one coconut to the monkey).

This page as a plain text file.
%I A362359 #14 Nov 17 2023 08:13:58
%S A362359 1,2,7,3,15,79,4,23,160,1021,5,31,241,2045,15621,6,39,322,3069,31246,
%T A362359 279931,7,47,403,4093,46871,559867,5764795,8,55,484,5117,62496,839803,
%U A362359 11529596,134217721,9,63,565,6141,78121,1119739,17294397,268435449,3486784393,10,71,646,7165,93746,1399675,23059198,402653177,6973568794,99999999991
%N A362359 Triangle T read by rows, obtained from the array A for the solutions of the Monkey and Coconuts Problem (s sailors and one coconut to the monkey).
%C A362359 For the five sailors and one monkey problem see A254029.
%C A362359 The rows s of the array A give the positive solutions to the following problem: Recurrence co(k) = ((s-1)/s)*(co(k-1) - 1), for k >= 0, with co(0) = a, and the requirement c0(s) - 1 == 0 (mod s), for s >= 1. Then a = a(s, n) = A(s, n), for n >= 1.
%H A362359 Paolo Xausa, <a href="/A362359/b362359.txt">Table of n, a(n) for n = 1..11325</a> (rows 1..150 of the triangle, flattened).
%F A362359 T(n, k) = A(k, n - k + 1), with the array A(s, n) = n*s^(s+1) - (s - 1), for s >= 1 and n >= 1. (Array read by antidiagonals downwards.)
%F A362359 T(n, k) = (n - k + 1)*k^(k+1) - (k - 1), for k = 1, 2, ..., n.
%F A362359 O.g.f. for row s of array A: (x/(1 - x)^2)*(s^(s + 1) - (s - 1)*(1 - x)).
%F A362359 E.g.f. for column n of array A: n*(-W(-x)/(1 - (-W(-x)))^3) - (1 - (1 - x)*exp(x)), with the principal branch of Lambert's W-function
%e A362359 The array A begins:
%e A362359 s\n     1      2      3       4       5       6       7       8       9 ...
%e A362359 ---------------------------------------------------------------------------
%e A362359 1:      1      2      3       4       5       6       7       8       9 ...
%e A362359 2:      7     15     23      31      39      47      55      63      71 ...
%e A362359 3:     79    160    241     322     403     484     565     646     727 ...
%e A362359 4:   1021   2045   3069    4093    5117    6141    7165    8189    9213 ...
%e A362359 5:  15621  31246  46871   62496   78121   93746  109371  124996  140621 ...
%e A362359 6: 279931 559867 839803 1119739 1399675 1679611 1959547 2239483 2519419 ...
%e A362359 ...
%e A362359 s = 7: 5764795 11529596 17294397 23059198 28823999 34588800 40353601 46118402 51883203 57648004, ...
%e A362359 ...
%e A362359 -----------------------------------------------------------------------------
%e A362359 The triangle begins:
%e A362359   n\k  1  2   3    4     5       6        7         8          9          10
%e A362359   ---------------------------------------------------------------------------
%e A362359   1:   1
%e A362359   2:   2  7
%e A362359   3:   3 15  79
%e A362359   4    4 23 160 1021
%e A362359   5:   5 31 241 2045 15621
%e A362359   6:   6 39 322 3069 31246  279931
%e A362359   7:   7 47 403 4093 46871  559867  5764795
%e A362359   8:   8 55 484 5117 62496  839803 11529596 134217721
%e A362359   9:   9 63 565 6141 78121 1119739 17294397 268435449 3486784393
%e A362359  10:  10 71 646 7165 93746 1399675 23059198 402653177 6973568794 99999999991
%e A362359  ...
%e A362359 -----------------------------------------------------------------------------
%t A362359 A362359row[n_]:=Array[(n-#+1)#^(#+1)-#+1&,n];Array[A362359row,10] (* _Paolo Xausa_, Nov 17 2023 *)
%Y A362359 Rows of array A (columns of triangle T starting with index n): A000027, A004771(n-1), A362360, A362361, A254029.
%Y A362359 First column of array A (diagonal of triangle T): A014293.
%K A362359 nonn,tabl,easy
%O A362359 1,2
%A A362359 Richard S. Fischer and _Wolfdieter Lang_, Jun 20 2023