This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362369 #11 May 10 2023 08:24:01 %S A362369 1,0,0,2,0,3,0,4,12,0,5,60,0,6,210,120,0,7,630,1260,0,8,1736,8400, %T A362369 1680,0,9,4536,45360,30240,0,10,11430,216720,327600,30240,0,11,28050, %U A362369 956340,2772000,831600,0,12,67452,3993000,20207880,13305600,665280 %N A362369 Triangle read by rows, T(n, k) = binomial(n, k) * k! * Stirling2(n-k, k), for n >= 0 and 0 <= k <= n//2, where '//' denotes integer division. %F A362369 From _Mélika Tebni_, May 10 2023: (Start) %F A362369 E.g.f. of column k: (x*(exp(x)-1))^k / k!. %F A362369 Sum_{k=0..n-1} (-1)^(n+k-1)*T(n+k-1, k) = A000169(n), for n > 0. (End) %e A362369 Triangle T(n, k) starts: %e A362369 [0] 1; %e A362369 [1] 0; %e A362369 [2] 0, 2; %e A362369 [3] 0, 3; %e A362369 [4] 0, 4, 12; %e A362369 [5] 0, 5, 60; %e A362369 [6] 0, 6, 210, 120; %e A362369 [7] 0, 7, 630, 1260; %e A362369 [8] 0, 8, 1736, 8400, 1680; %e A362369 [9] 0, 9, 4536, 45360, 30240; %p A362369 T := (n, k) -> binomial(n, k) * k! * Stirling2(n-k, k): %p A362369 seq(seq(T(n, k), k = 0..iquo(n, 2)), n = 0..9); %p A362369 # second program: %p A362369 egf := k-> (x*(exp(x)-1))^k / k!: %p A362369 A362369 := (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n): %p A362369 seq(print(seq(A362369(n, k), k=0..iquo(n,2))), n=0..12); # _Mélika Tebni_, May 10 2023 %o A362369 (SageMath) %o A362369 def A362369(n, k): %o A362369 return binomial(n, k) * factorial(k) * stirling_number2(n - k, k) %o A362369 for n in range(10): %o A362369 print([A362369(n, k) for k in range(n//2 + 1)]) %Y A362369 Cf. A000169, A052506 (row sums), A362788, A362789. %K A362369 nonn,tabf %O A362369 0,4 %A A362369 _Peter Luschny_, May 04 2023