This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362370 #9 Apr 18 2023 08:29:30 %S A362370 1,0,1,0,1,0,0,1,1,0,0,1,1,0,0,0,1,2,1,0,0,0,1,2,1,0,0,0,0,1,3,2,0,0, %T A362370 0,0,0,1,3,3,1,0,0,0,0,0,1,4,4,2,0,0,0,0,0,0,1,4,6,3,1,0,0,0,0,0,0,1, %U A362370 5,7,5,1,0,0,0,0,0,0,0,1,5,9,6,2,0,0,0,0,0,0,0 %N A362370 Triangle read by rows. T(n, k) = ([x^k] P(n, x)) // k! where P(n, x) = Sum_{k=1..n} P(n - k, x) * x if n >= 1 and P(0, x) = 1. The notation 's // t' means integer division and is a shortcut for 'floor(s/t)'. %C A362370 Row n gives the coefficients of the set partition polynomials of type m = 0 (the base case). The sequence of these polynomial sequences starts: this sequence, A048993, A156289, A291451, A291452, ... %F A362370 T(n, k) = floor(A097805(n, k) / k!). %e A362370 Triangle T(n, k) starts: %e A362370 [0] [1] %e A362370 [1] [0, 1] %e A362370 [2] [0, 1, 0] %e A362370 [3] [0, 1, 1, 0] %e A362370 [4] [0, 1, 1, 0, 0] %e A362370 [5] [0, 1, 2, 1, 0, 0] %e A362370 [6] [0, 1, 2, 1, 0, 0, 0] %e A362370 [7] [0, 1, 3, 2, 0, 0, 0, 0] %e A362370 [8] [0, 1, 3, 3, 1, 0, 0, 0, 0] %e A362370 [9] [0, 1, 4, 4, 2, 0, 0, 0, 0, 0] %p A362370 T := (n, k) -> iquo(binomial(n - 1, k - 1), k!): %p A362370 seq(print(seq(T(n, k), k = 0..n)), n = 0..9); %o A362370 (SageMath) %o A362370 R = PowerSeriesRing(ZZ, "x") %o A362370 x = R.gen().O(33) %o A362370 @cached_function %o A362370 def p(n) -> Polynomial: %o A362370 if n == 0: return R(1) %o A362370 return sum(p(n - k) * x for k in range(1, n + 1)) %o A362370 def A362370_row(n) -> list[int]: %o A362370 L = p(n).list() %o A362370 return [L[k] // factorial(k) for k in range(n + 1)] %o A362370 for n in range(10): %o A362370 print(A362370_row(n)) %Y A362370 Cf. A097805, A362307 (row sums). %Y A362370 Cf. the family of partition polynomials: this sequence (m=0), A048993 (m=1), A156289 (m=2), A291451 (m=3), A291452 (m=4). %K A362370 nonn,tabl %O A362370 0,18 %A A362370 _Peter Luschny_, Apr 17 2023