This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362372 #42 May 06 2023 06:58:09 %S A362372 1,1,2,1,3,1,1,5,1,1,7,1,1,9,1,2,10,2,2,10,4,2,1,1,12,6,2,1,1,1,1,16, %T A362372 8,2,2,1,1,1,1,1,2,21,12,2,2,1,1,1,1,1,2,26,15,2,2,1,1,1,1,1,2,31,18, %U A362372 2,2,1,1,1,1,1,2,36,21,2,2,1,2,1,1,1 %N A362372 Inventory of powers. Initialize the sequence with '1'. Then record the number of powers of 1 thus far, then do the same for powers of 2 (2, 4, 8, ...), powers of 3, etc. When the count is zero, do not record a zero; rather start the inventory again with the powers of 1. %C A362372 A variant of the inventory sequence, A342585. %C A362372 The graph exhibits sharp jumps followed by a rapid decline forming a periodic hockey stick pattern. Larger-scale, near-linear structures also appear. %C A362372 Periodic patterns in the relative frequency of any given number also are present. For example, perform a rolling count of the number of times 2 appears in the previous 40 entries. %C A362372 Open question: will all positive integers appear in the sequence? %H A362372 Michael S. Branicky, <a href="/A362372/b362372.txt">Table of n, a(n) for n = 0..10000</a> (first 4330 terms from Damon Lay) %e A362372 As an irregular triangle, the table begins: %e A362372 1; %e A362372 1; %e A362372 2, 1; %e A362372 3, 1, 1; %e A362372 5, 1, 1; %e A362372 7, 1, 1; %e A362372 9, 1, 2; %e A362372 10, 2, 2; %e A362372 10, 4, 2, 1, 1; %e A362372 12, 6, 2, 1, 1, 1, 1; %e A362372 16, 8, 2, 2, 1, 1, 1, 1, 1, 2; %e A362372 ... %e A362372 Initialize the sequence with '1'. %e A362372 Powers of 1 are counted in the first column, powers of 2 in the second, powers of 3 in the third, etc. %o A362372 (Python) %o A362372 from collections import Counter %o A362372 from sympy import divisors, perfect_power %o A362372 def powers_in(n): %o A362372 t = perfect_power(n) # False for n == 1 %o A362372 return [n] if not t else [t[0]**d for d in divisors(t[1])] %o A362372 def aupton(nn): %o A362372 num, alst, inventory = 1, [1], Counter([1]) %o A362372 while len(alst) <= nn: %o A362372 c = inventory[num] %o A362372 if c == 0: num = 1 %o A362372 else: num += 1; alst.append(c); inventory.update(powers_in(c)) %o A362372 return alst %o A362372 print(aupton(100)) # _Michael S. Branicky_, May 05 2023 %Y A362372 Cf. A342585 and similar variants thereof: A345730, A347791, A348218, A352799, A353092. %K A362372 easy,nonn,tabf %O A362372 0,3 %A A362372 _Damon Lay_, Apr 17 2023