This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362376 #48 Aug 28 2023 08:21:31 %S A362376 1,1,1,3,3,3,9,3,4,9,3,4,3,27,4,24,24,4,3,6,3,3,444,3,12,9,3,63,6,8, %T A362376 36,6,36,12,12,4,21,60,4,3,24,73,51,3,11,51,12,4,504,12,3,33,21,6,9,6, %U A362376 4,384,21,7,54,3,4,51,24,63,30,24,11,45,72,6,39,9,22,42,12,16,60,30 %N A362376 a(n) is the least k such that Fibonacci(n)*Fibonacci(k) + 1 is a prime, and -1 if no such k exists. %C A362376 The frequencies seem interesting. In the early terms, 5 appears notably rarely, i.e., not until at a(240), whereas several other numbers appear notably frequently, e.g., 24 appears 13 times before a(240). - _Peter Munn_, May 03 2023 %H A362376 Chai Wah Wu, <a href="/A362376/b362376.txt">Table of n, a(n) for n = 1..448</a> %F A362376 a(n) = A363533(A000045(n)). - _Pontus von Brömssen_, Jun 20 2023 %e A362376 For n=4, Fibonacci(4)=3 and 3*Fibonacci(k)+1 is not prime until k reaches 3, so a(4)=3. %t A362376 Table[m = Fibonacci[n]; k = 1; While[! PrimeQ[m*Fibonacci[k] + 1], k++]; k, {n, 120}] (* _Michael De Vlieger_, May 03 2023 *) %o A362376 (PARI) a(n) = my(F=fibonacci(n), k=1); while (!ispseudoprime(F*fibonacci(k) + 1), k++); k; \\ _Michel Marcus_, Apr 18 2023 %o A362376 (Python) %o A362376 from itertools import count %o A362376 from sympy import fibonacci, isprime %o A362376 def A362376(n): %o A362376 a = b = fibonacci(n) %o A362376 for k in count(1): %o A362376 if isprime(a+1): %o A362376 return k %o A362376 a, b = b, a+b # _Chai Wah Wu_, May 03 2023 %Y A362376 Cf. A000040, A000045, A034693, A363533. %K A362376 nonn %O A362376 1,4 %A A362376 _Jack Braxton_, Apr 17 2023 %E A362376 More terms from _Michel Marcus_, Apr 18 2023