This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362377 #22 Feb 16 2025 08:34:05 %S A362377 1,1,1,1,1,1,1,1,2,1,1,1,3,7,1,1,1,4,13,34,1,1,1,5,19,85,216,1,1,1,6, %T A362377 25,154,701,1696,1,1,1,7,31,241,1456,7261,15898,1,1,1,8,37,346,2481, %U A362377 18136,89125,173468,1,1,1,9,43,469,3776,35761,260002,1277865,2161036,1 %N A362377 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..floor(n/2)} (k/2)^j * (j+1)^(n-j-1) / (j! * (n-2*j)!). %H A362377 Seiichi Manyama, <a href="/A362377/b362377.txt">Antidiagonals n = 0..139, flattened</a> %H A362377 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>. %F A362377 E.g.f. A_k(x) of column k satisfies A_k(x) = exp(x + k*x^2/2 * A_k(x)). %F A362377 A_k(x) = exp(x - LambertW(-k*x^2/2 * exp(x))). %F A362377 A_k(x) = -2 * LambertW(-k*x^2/2 * exp(x))/(k*x^2) for k > 0. %e A362377 Square array begins: %e A362377 1, 1, 1, 1, 1, 1, 1, ... %e A362377 1, 1, 1, 1, 1, 1, 1, ... %e A362377 1, 2, 3, 4, 5, 6, 7, ... %e A362377 1, 7, 13, 19, 25, 31, 37, ... %e A362377 1, 34, 85, 154, 241, 346, 469, ... %e A362377 1, 216, 701, 1456, 2481, 3776, 5341, ... %e A362377 1, 1696, 7261, 18136, 35761, 61576, 97021, ... %o A362377 (PARI) T(n, k) = n! * sum(j=0, n\2, (k/2)^j*(j+1)^(n-j-1)/(j!*(n-2*j)!)); %Y A362377 Columns k=0..3 give A000012, A143740, A125500, A362380. %Y A362377 Cf. A362378, A362394. %K A362377 nonn,tabl %O A362377 0,9 %A A362377 _Seiichi Manyama_, Apr 20 2023