This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362378 #20 Feb 16 2025 08:34:05 %S A362378 1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,3,9,1,1,1,1,4,17,41,1,1,1,1,5,25, %T A362378 81,191,1,1,1,1,6,33,121,441,1191,1,1,1,1,7,41,161,751,3641,9353,1,1, %U A362378 1,1,8,49,201,1121,7351,33825,77897,1 %N A362378 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..floor(n/3)} (k/6)^j * (j+1)^(n-2*j-1) / (j! * (n-3*j)!). %H A362378 Seiichi Manyama, <a href="/A362378/b362378.txt">Antidiagonals n = 0..139, flattened</a> %H A362378 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>. %F A362378 E.g.f. A_k(x) of column k satisfies A_k(x) = exp(x + k*x^3/6 * A_k(x)). %F A362378 A_k(x) = exp(x - LambertW(-k*x^3/6 * exp(x))). %F A362378 A_k(x) = -6 * LambertW(-k*x^3/6 * exp(x))/(k*x^3) for k > 0. %e A362378 Square array begins: %e A362378 1, 1, 1, 1, 1, 1, 1, ... %e A362378 1, 1, 1, 1, 1, 1, 1, ... %e A362378 1, 1, 1, 1, 1, 1, 1, ... %e A362378 1, 2, 3, 4, 5, 6, 7, ... %e A362378 1, 9, 17, 25, 33, 41, 49, ... %e A362378 1, 41, 81, 121, 161, 201, 241, ... %e A362378 1, 191, 441, 751, 1121, 1551, 2041, ... %o A362378 (PARI) T(n, k) = n! * sum(j=0, n\3, (k/6)^j*(j+1)^(n-2*j-1)/(j!*(n-3*j)!)); %Y A362378 Columns k=0..3 give A000012, A362381, A362390, A362391. %Y A362378 Cf. A362043, A362377. %K A362378 nonn,tabl %O A362378 0,14 %A A362378 _Seiichi Manyama_, Apr 20 2023