cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362379 Convolution triangle of A052547(n).

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 1, 4, 0, 1, 5, 2, 6, 0, 1, 5, 14, 3, 8, 0, 1, 14, 14, 27, 4, 10, 0, 1, 19, 49, 27, 44, 5, 12, 0, 1, 42, 68, 113, 44, 65, 6, 14, 0, 1, 66, 175, 159, 214, 65, 90, 7, 16, 0, 1, 131, 286, 465, 304, 360, 90, 119, 8, 18, 0, 1
Offset: 0

Views

Author

Philippe Deléham, Apr 20 2023

Keywords

Examples

			Triangle begins, for n>=0, 0<=k<=n :
   1 ;
   0,  1 ;
   2,  0,   1 ;
   1,  4,   0,  1 ;
   5,  2,   6,  0,  1 ;
   5, 14,   3,  8,  0,  1 ;
  14, 14,  27,  4, 10,  0,  1 ;
  19, 49,  27, 44,  5, 12,  0, 1 ;
  42, 68, 113, 44, 65,  6, 14, 0, 1 ;
  ...
		

Crossrefs

Cf. A052547, A077998 (row sums), A052964 (diagonal sums).

Formula

T(n,k) = T(n-1,k) + T(n-1,k-1) + 2*T(n-2,k) - T(n-2,k-1) - T(n-3,k) ; T(0,0) = T(1,1) = T(2,2) = 1, T(1,0) = T(2,1) = 0, T(2,0) = 2, T(n,k) = 0 if k<0 or if k>n .
Sum_{k = 0..n} T(n,k)*x^k = A052547(n), A077998(n), A052536(n), A052941(n) for x = 0, 1, 2, 3 respectively.
Sum_{k = 0..n} T(n,k)*2^(n-k) = A139818(n+1) = A001045(n+1)^2.