cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362392 E.g.f. satisfies A(x) = exp(x + x^3 * A(x)).

This page as a plain text file.
%I A362392 #18 Feb 16 2025 08:34:05
%S A362392 1,1,1,7,49,241,2041,26041,282913,3449377,57170161,973059121,
%T A362392 16847893921,343341027745,7680743819113,175958943331081,
%U A362392 4375517632543681,118932887426911681,3374685950589927649,100735118425384221025,3217474234925998764481
%N A362392 E.g.f. satisfies A(x) = exp(x + x^3 * A(x)).
%H A362392 Seiichi Manyama, <a href="/A362392/b362392.txt">Table of n, a(n) for n = 0..414</a>
%H A362392 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A362392 E.g.f.: exp(x - LambertW(-x^3 * exp(x))) = -LambertW(-x^3 * exp(x))/x^3.
%F A362392 a(n) = n! * Sum_{k=0..floor(n/3)} (k+1)^(n-2*k-1) / (k! * (n-3*k)!).
%o A362392 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-x^3*exp(x)))))
%Y A362392 Column k=6 of A362378.
%Y A362392 Cf. A118395, A125500, A362393, A362430.
%K A362392 nonn
%O A362392 0,4
%A A362392 _Seiichi Manyama_, Apr 20 2023