cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362393 E.g.f. satisfies A(x) = exp(x + x^4 * A(x)).

This page as a plain text file.
%I A362393 #16 Feb 16 2025 08:34:05
%S A362393 1,1,1,1,25,241,1441,6721,87361,1729729,24816961,270452161,3705324481,
%T A362393 85344916801,1992230175937,38047293910081,709217112938881,
%U A362393 17385498239168641,514103858592923521,14254662916125735553,366807994235438359681,10338786602768939575681
%N A362393 E.g.f. satisfies A(x) = exp(x + x^4 * A(x)).
%H A362393 Seiichi Manyama, <a href="/A362393/b362393.txt">Table of n, a(n) for n = 0..422</a>
%H A362393 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A362393 E.g.f.: exp(x - LambertW(-x^4 * exp(x))) = -LambertW(-x^4 * exp(x))/x^4.
%F A362393 a(n) = n! * Sum_{k=0..floor(n/4)} (k+1)^(n-3*k-1) / (k! * (n-4*k)!).
%o A362393 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-x^4*exp(x)))))
%Y A362393 Cf. A125500, A362392.
%Y A362393 Cf. A362431.
%K A362393 nonn
%O A362393 0,5
%A A362393 _Seiichi Manyama_, Apr 20 2023