This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362394 #20 Feb 16 2025 08:34:05 %S A362394 1,1,1,1,1,1,1,1,0,1,1,1,-1,-5,1,1,1,-2,-11,-14,1,1,1,-3,-17,-11,56,1, %T A362394 1,1,-4,-23,10,381,736,1,1,1,-5,-29,49,976,2461,1114,1,1,1,-6,-35,106, %U A362394 1841,3736,-21083,-45156,1,1,1,-7,-41,181,2976,3121,-106910,-449623,-428660,1 %N A362394 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..floor(n/2)} (-k/2)^j * (j+1)^(n-j-1) / (j! * (n-2*j)!). %H A362394 Seiichi Manyama, <a href="/A362394/b362394.txt">Antidiagonals n = 0..139, flattened</a> %H A362394 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>. %F A362394 E.g.f. A_k(x) of column k satisfies A_k(x) = exp(x - k*x^2/2 * A_k(x)). %F A362394 A_k(x) = exp(x - LambertW(k*x^2/2 * exp(x))). %F A362394 A_k(x) = 2 * LambertW(k*x^2/2 * exp(x))/(k*x^2) for k > 0. %e A362394 Square array begins: %e A362394 1, 1, 1, 1, 1, 1, 1, ... %e A362394 1, 1, 1, 1, 1, 1, 1, ... %e A362394 1, 0, -1, -2, -3, -4, -5, ... %e A362394 1, -5, -11, -17, -23, -29, -35, ... %e A362394 1, -14, -11, 10, 49, 106, 181, ... %e A362394 1, 56, 381, 976, 1841, 2976, 4381, ... %e A362394 1, 736, 2461, 3736, 3121, -824, -9539, ... %o A362394 (PARI) T(n, k) = n! * sum(j=0, n\2, (-k/2)^j*(j+1)^(n-j-1)/(j!*(n-2*j)!)); %Y A362394 Columns k=0..3 give A000012, A362395, A362396, A362397. %Y A362394 Cf. A362277, A362377. %K A362394 sign,tabl %O A362394 0,14 %A A362394 _Seiichi Manyama_, Apr 20 2023