This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362401 #11 Apr 20 2023 13:20:26 %S A362401 0,4,9,12,16,24,25,27,28,32,36,48,49,54,56,60,72,75,79,80,96,100,108, %T A362401 112,117,120,121,124,126,128,144,147,150,152,162,168,169,176,180,183, %U A362401 192,196,199,200,216,224,240,248,252,268,270,272,288,289,294,296,300 %N A362401 Numbers in the range of A162296, where A162296(n) is the sum of divisors of n that have a square factor larger than 1. %C A362401 Possible values of A162296 in increasing order. %H A362401 Amiram Eldar, <a href="/A362401/b362401.txt">Table of n, a(n) for n = 1..10000</a> %e A362401 0 is a term since A162296(k) = 0 if k is squarefree (A005117). %t A362401 s[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; Times @@ ((p^(e + 1) - 1)/(p - 1)) - Times @@ (p + 1)]; s[1] = 0; m = 300; Select[Union[Array[s, m]], # <= m &] %o A362401 (PARI) s(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; ((p^(e + 1) - 1)/(p - 1))) - prod(i = 1, #f~, f[i, 1] + 1);} %o A362401 lista(kmax) = select(x -> (x < kmax), Set(vector(kmax, k, s(k)))) %Y A362401 Cf. A005117, A162296. %Y A362401 Similar sequences: A078923, A002191, A002202, A002174, A274790. %K A362401 nonn %O A362401 1,2 %A A362401 _Amiram Eldar_, Apr 18 2023