A362403 Number of times that the number A362402(n) occurs as a sum of divisors that have a square factor (A162296).
0, 1, 2, 3, 5, 7, 9, 10, 13, 15, 16, 20, 22, 23, 28, 34, 46, 53, 60, 62, 78, 81, 113, 115, 122, 132, 154, 184, 185, 222, 248, 254, 343, 346, 350, 354, 497, 569, 701, 711, 860, 941, 1088, 1221, 1222, 1235, 1263, 1306, 1572, 1721, 1737, 1948, 2191, 2315, 2418, 2877
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..60
Programs
-
Mathematica
s[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; Times @@ ((p^(e + 1) - 1)/(p - 1)) - Times @@ (p + 1)]; s[1] = 0; seq[max_] := Module[{v = Select[Array[s, max], 0 < # <= max &], sq = {0}, t, tmax = 0}, t = Sort[Tally[v]]; Do[If[t[[k]][[2]] > tmax, tmax = t[[k]][[2]]; AppendTo[sq, t[[k]][[2]]]], {k, 1, Length[t]}]; sq]; seq[10^5]
-
PARI
s(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; ((p^(e + 1) - 1)/(p - 1))) - prod(i = 1, #f~, f[i, 1] + 1);} lista(kmax) = {my(v = vector(kmax), vmax = 0, i); for(k=1, kmax, i = s(k); if(i > 0 && i <= kmax, v[i]++)); print1(0, ", "); for(k=1, kmax, if(v[k] > vmax, vmax = v[k]; print1(v[k], ", "))); }