cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A362405 Numbers k such that k, k+1 and k+2 are all in A362401.

Original entry on oeis.org

1638, 1848, 3798, 11448, 16854, 26910, 35574, 37248, 57120, 69678, 69822, 85848, 94248, 110526, 208848, 272214, 305046, 310248, 335478, 335479, 368448, 573048, 580680, 687240, 1017126, 1154270, 1230606, 1289358, 1423248, 1467414, 1697808, 1718880, 1776750, 1777248
Offset: 1

Views

Author

Amiram Eldar, Apr 18 2023

Keywords

Comments

Up to 10^8, k = 335478 is the only number k such that k, k+1, k+2 and k+3 are all in A362401. Are there any other such terms?

Examples

			1638 is a term since 1638, 1639 and 1640 are all in the range of A162296: A162296(1053) = 1638, A162296(576) = 1639 and A162296(1636) = 1640.
		

Crossrefs

Subsequence of A362401 and A362404.
Cf. A162296.

Programs

  • Mathematica
    s[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; Times @@ ((p^(e + 1) - 1)/(p - 1)) - Times @@ (p + 1)]; s[1] = 0; seq[max_] := Module[{v = Select[Union[Array[s, max]], 0 < # <= max &], w, i, j}, i = Position[Differences[v], 1] // Flatten; w = v[[i]]; j = Position[Differences[w], 1] // Flatten; w[[j]]]; seq[10^6]
  • PARI
    s(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; ((p^(e + 1) - 1)/(p - 1))) -  prod(i = 1, #f~, f[i, 1] + 1);}
    lista(kmax) = {my(v = select(x -> (x < kmax), Set(vector(kmax, k, s(k))))); for(k=1, #v-2, if(v[k+1] - v[k] == 1 && v[k+2] - v[k+1] == 1, print1(v[k], ", ")));}
Showing 1-1 of 1 results.