This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362414 #18 Oct 22 2023 15:06:10 %S A362414 1,1,1,2,1,1,1,2,3,1,1,1,1,1,1,2,1,3,1,1,1,1,1,1,5,1,3,1,1,1,1,2,1,1, %T A362414 1,3,1,1,1,1,1,1,1,1,3,1,1,1,7,5,1,1,1,3,1,1,1,1,1,1,1,1,1,2,1,1,1,1, %U A362414 1,1,1,3,1,1,5,1,1,1,1,1,3,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,7,3,5 %N A362414 a(n) = gcd(n, phi(n)^2) / gcd(n, phi(n)). %C A362414 a(n) = 1 if n is squarefree. %H A362414 Paolo Xausa, <a href="/A362414/b362414.txt">Table of n, a(n) for n = 1..10000</a> %F A362414 a(n) = gcd(n,A127473(n)) / A009195(n). %F A362414 1 <= a(n) <= sqrt(n). The lower bound is sharp (squarefree numbers), as is the upper bound (squares of primes). - _Charles R Greathouse IV_, May 03 2023 %t A362414 A362414[n_]:=With[{p=EulerPhi[n]},GCD[n,p^2]/GCD[n,p]]; %t A362414 Array[A362414,100] (* _Paolo Xausa_, Oct 22 2023 *) %o A362414 (Magma) [Gcd(n, EulerPhi(n)^2) / Gcd(n, EulerPhi(n)): n in [1..100]]; %o A362414 (PARI) a(n)=my(f=eulerphi(n)); gcd(n,f^2)/gcd(n,f) \\ _Charles R Greathouse IV_, May 03 2023 %Y A362414 Cf. A000010, A000188, A009195. %K A362414 nonn,easy %O A362414 1,4 %A A362414 _Juri-Stepan Gerasimov_, Apr 19 2023