This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362424 #17 Feb 16 2025 08:34:05 %S A362424 0,0,0,0,0,1,0,0,0,1,1,0,1,1,0,0,0,2,0,0,1,0,0,0,1,1,1,0,1,1,0,1,0,2, %T A362424 1,1,2,1,0,0,2,2,0,1,1,1,0,0,1,0,1,0,2,1,0,0,0,2,1,1,0,1,0,1,0,2,0,0, %U A362424 2,0,0,0,1,1,1,0,1,0,0,0,1,1,1,0,0,2,0,0,0,2,1,1 %N A362424 Number of partitions of n into 2 distinct perfect powers (A001597). %H A362424 Karl-Heinz Hofmann, <a href="/A362424/b362424.txt">Table of n, a(n) for n = 0..10000</a> %H A362424 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PerfectPower.html">Perfect Power</a>. %t A362424 perfectPowerQ[n_] := n == 1 || GCD @@ FactorInteger[n][[;; , 2]] > 1; a[n_] := Count[IntegerPartitions[n, {2}], _?(AllTrue[#, perfectPowerQ] && UnsameQ @@ # &)]; Array[a, 100, 0] (* _Amiram Eldar_, May 05 2023 *) %o A362424 (Python) %o A362424 import numpy %o A362424 from math import isqrt %o A362424 A072103 = [] %o A362424 for m in range(2,isqrt(10001)+1): %o A362424 k = 2 %o A362424 while m**k < 10001: %o A362424 A072103.append(m**k) %o A362424 k += 1 %o A362424 A001597 = sorted(set(A072103)) # eliminates multiples and sorting %o A362424 A362424 = numpy.zeros(10001+1, dtype="i4") %o A362424 A001597 = [1] + A001597 # we need a "1" in front of A001597 %o A362424 a = 0 %o A362424 while A001597[a] < 10001 // 2: %o A362424 b = a + 1 %o A362424 while b < len(A001597) and A001597[a] + A001597[b] < 10001: %o A362424 A362424[A001597[a] + A001597[b]] += 1 %o A362424 b += 1 %o A362424 a += 1 %o A362424 print(list(A362424[0:92])) # _Karl-Heinz Hofmann_, Sep 16 2023 %Y A362424 Cf. A001597, A072103, A362425. %K A362424 nonn %O A362424 0,18 %A A362424 _Ilya Gutkovskiy_, Apr 19 2023