cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362431 E.g.f. satisfies A(x) = exp(x - x^4 * A(x)).

This page as a plain text file.
%I A362431 #11 Feb 16 2025 08:34:05
%S A362431 1,1,1,1,-23,-239,-1439,-6719,33601,1536193,24171841,268424641,
%T A362431 1144566721,-47515765439,-1727426116415,-36344982098879,
%U A362431 -481057514071679,1197767242412161,319851095455612801,12145632936380316289,293167011107091899521,3520557699737168603521
%N A362431 E.g.f. satisfies A(x) = exp(x - x^4 * A(x)).
%H A362431 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A362431 E.g.f.: exp(x - LambertW(x^4 * exp(x))) = LambertW(x^4 * exp(x))/x^4.
%F A362431 a(n) = n! * Sum_{k=0..floor(n/4)} (-1)^k * (k+1)^(n-3*k-1) / (k! * (n-4*k)!).
%o A362431 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(x^4*exp(x)))))
%Y A362431 Cf. A362396, A362430.
%Y A362431 Cf. A362393.
%K A362431 sign
%O A362431 0,5
%A A362431 _Seiichi Manyama_, Apr 20 2023