This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362434 #29 May 20 2025 12:43:53 %S A362434 17,5185,1669265,537497857,173072640401,55728852710977, %T A362434 17944517500293905,5778078906241926145,1860523463292399924497, %U A362434 599082777101246533761601,192902793703138091471310737,62114100489633364207228295425,20000547454868240136636039815825,6440114166367083690632597592399937 %N A362434 Numbers that can be written as A000045(i) + j^2 for i,j>=0 in 4 ways. %C A362434 A000045(1) and A000045(2) are counted separately, even though they both are 1. %F A362434 With a = A000045(6*k-1) and b = A000045(6*k) and x = 1 + b^2/4, we have %F A362434 x = A000045(1) + (b/2)^2 %F A362434 = A000045(2) + (b/2)^2 %F A362434 = A000045(6*k) + (b/2 - 1)^2 %F A362434 = A000045(12*k-6) + (3*b/2 - a)^2. %F A362434 Conjecture: a(n) = 1 + A000045(6*n)^2/4. %e A362434 17 = A000045(1) + 4^2 = A000045(2) + 4^2 = A000045(6) + 3^2 = A000045(7) + 2^2. %e A362434 5185 = A000045(1) + 72^2 = A000045(2) + 72^2 = A000045(12) + 71^2 = A000045(18) + 51^2. %e A362434 1669265 = A000045(1) + 1292^2 = A000045(2) + 1292^2 = A000045(18) + 1291^2 = A000045(30) + 915^2. %e A362434 537497857 = A000045(1) + 23184^2 = A000045(2) + 23184^2 = A000045(24) + 23183^2 = A000045(42) + 16419^2. %p A362434 N:= 10^6: # to get terms <= N %p A362434 V:= Array(0..N, datatype=integer[1]): %p A362434 for i from 0 do %p A362434 f:= combinat:-fibonacci(i); %p A362434 if f > N then break fi; %p A362434 s:= floor(sqrt(N-f)); %p A362434 J:=[seq(f+i^2, i=0..s)]; %p A362434 V[J]:= V[J] +~ 1; %p A362434 od: %p A362434 select(i -> V[i] >= 4, [$1..N]); %o A362434 (PARI) A362503(n) = my(f, s=0); for(i=0, oo, if(n<f=fibonacci(i), return(s), if(issquare(n-f), s++))); %o A362434 lista(nn) = my(v=List([]), x, y, t); for(i=3, log(sqrt(5)*nn+1.5)\log((1+sqrt(5))/2), x=fibonacci(i); for(j=1, i-1, y=x-fibonacci(j); fordiv(y, d, if(d>sqrtint(y), break); t=y/d-d; if(t%2==0, for(k=0, j-1, if(issquare(t^2+4*(x-fibonacci(k))), listput(v, x+t^2/4))))))); v=Set(v); for(i=1, #v, if(v[i]>nn, break); if(A362503(v[i])==4, print1(v[i], ", "))); \\ _Jinyuan Wang_, Apr 24 2023 %Y A362434 Cf. A000045, A362409, A362503. %K A362434 nonn %O A362434 1,1 %A A362434 _Robert Israel_, Apr 21 2023 %E A362434 More terms from _Jinyuan Wang_, Apr 23 2023