This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362446 #23 Aug 04 2024 16:55:15 %S A362446 11213,12415,12361,71248,13912,51011,11234,61211,31271,41351,51248, %T A362446 16117,12369,18119,12451,2013,72112,11221,23123,46812,24152,51213, %U A362446 26139,27124,71428,12912,35610,15301,31124,81632,13113,31217,34157,35123,46912,18361,37121,93813 %N A362446 Concatenate the terms of A027750 (omitting spaces and commas), chop into blocks of length 5, then omit any leading zeros. %C A362446 Marginal; included only because it appears in a well-known book of puzzles. %C A362446 In the first 2,500 terms, only one term appears more than 8 times -- 12346 appears 14 times. - _Harvey P. Dale_, Aug 04 2024 %D A362446 GCHQ, The GCHQ Puzzle Book, Penguin, 2016. See pages 119 and 318. %H A362446 Harvey P. Dale, <a href="/A362446/b362446.txt">Table of n, a(n) for n = 1..2500</a> %t A362446 FromDigits/@Partition[Flatten[Table[Flatten[IntegerDigits/@Divisors[n]],{n,40}]],5] (* _Harvey P. Dale_, Aug 04 2024 *) %o A362446 (Python) %o A362446 from sympy import divisors %o A362446 from itertools import chain, count, islice %o A362446 def dgen(): %o A362446 for n in count(1): yield from "".join(map(str, divisors(n))) %o A362446 def agen(): # generator of terms %o A362446 g = dgen() %o A362446 yield from (int("".join(islice(g, 5))) for n in count(1)) %o A362446 print(list(islice(agen(), 38))) # _Michael S. Branicky_, Apr 23 2023 %Y A362446 Cf. A027750. %K A362446 nonn,base,less %O A362446 1,1 %A A362446 _N. J. A. Sloane_, Apr 22 2023