A362450 Array of numbers read by upward antidiagonals: leading row lists tau(i), i >= 1 (cf. A000005); the following rows give absolute values of differences of previous row.
1, 1, 2, 1, 0, 2, 0, 1, 1, 3, 1, 1, 0, 1, 2, 1, 0, 1, 1, 2, 4, 1, 0, 0, 1, 0, 2, 2, 0, 1, 1, 1, 0, 0, 2, 4, 0, 0, 1, 0, 1, 1, 1, 1, 3, 0, 0, 0, 1, 1, 0, 1, 0, 1, 4, 0, 0, 0, 0, 1, 0, 0, 1, 1, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 1, 2, 4, 6, 0, 1, 0, 1, 0, 1, 1, 1, 1, 2, 0, 4, 2
Offset: 1
Examples
The array begins: 1 2 2 3 2 4 2 4 3 4 2 6 2 4 4 5 2 6 2 6 4 4 2 8 3 4 4 6 2 8 2 6 4 4 4 9 2 4 4 ... 1 0 1 1 2 2 2 1 1 2 4 4 2 0 1 3 4 4 4 2 0 2 6 5 1 0 2 4 6 6 4 2 0 0 5 7 2 0 4 ... 1 1 0 1 0 0 1 0 1 2 0 2 2 1 2 1 0 0 2 2 2 4 1 4 1 2 2 2 0 2 2 2 0 5 2 5 2 4 2 ... 0 1 1 1 0 1 1 1 1 2 2 0 1 1 1 1 0 2 0 0 2 3 3 3 1 0 0 2 2 0 0 2 5 3 3 3 2 2 2 ... 1 0 0 1 1 0 0 0 1 0 2 1 0 0 0 1 2 2 0 2 1 0 0 2 1 0 2 0 2 0 2 3 2 0 0 1 0 0 2 ... 1 0 1 0 1 0 0 1 1 2 1 1 0 0 1 1 0 2 2 1 1 0 2 1 1 2 2 2 2 2 1 1 2 0 1 1 0 2 0 ... 1 1 1 1 1 0 1 0 1 1 0 1 0 1 0 1 2 0 1 0 1 2 1 0 1 0 0 0 0 1 0 1 2 1 0 1 2 2 2 ... 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 ... 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 2 ... 0 0 1 1 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 1 1 0 2 0 ... 0 1 0 1 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 1 0 1 2 2 1 ... 1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 1 1 1 1 0 1 1 ... ... The first few antidiagonals are 1 1 2 1 0 2 0 1 1 3 1 1 0 1 2 1 0 1 1 2 4 1 0 0 1 0 2 2 0 1 1 1 0 0 2 4 ...
Links
- Paolo Xausa, Table of n, a(n) for n = 1..11325 (antidiagonals 1..150 of the array, flattened)
- Index entries for sequences related to Gilbreath conjecture and transform
Programs
-
Maple
A362450 := proc(n,k) option remember ; if n = 1 then numtheory[tau](k) ; else abs( procname(n-1,k+1)-procname(n-1,k)) ; end if; end proc: seq(seq(A362450(d-k,k),k=1..d-1),d=2..14) ; # R. J. Mathar, May 05 2023
-
Mathematica
A362450[dmax_]:=With[{d=Reverse[NestList[Abs[Differences[#]]&,DivisorSigma[0,Range[dmax]],dmax-1]]},Array[Diagonal[d,#]&,dmax,1-dmax]];A362450[20] (* Generates 20 antidiagonals *) (* Paolo Xausa, May 07 2023 *)
Formula
T(1,k) = A000005(k). T(n,k) = |T(n-1,k+1)-T(n-1,k)| for n>=2. - R. J. Mathar, May 10 2023
Comments