cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362450 Array of numbers read by upward antidiagonals: leading row lists tau(i), i >= 1 (cf. A000005); the following rows give absolute values of differences of previous row.

Original entry on oeis.org

1, 1, 2, 1, 0, 2, 0, 1, 1, 3, 1, 1, 0, 1, 2, 1, 0, 1, 1, 2, 4, 1, 0, 0, 1, 0, 2, 2, 0, 1, 1, 1, 0, 0, 2, 4, 0, 0, 1, 0, 1, 1, 1, 1, 3, 0, 0, 0, 1, 1, 0, 1, 0, 1, 4, 0, 0, 0, 0, 1, 0, 0, 1, 1, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 1, 2, 4, 6, 0, 1, 0, 1, 0, 1, 1, 1, 1, 2, 0, 4, 2
Offset: 1

Views

Author

N. J. A. Sloane, Apr 30 2023, following a suggestion from Wayman Eduardo Luy and Robert G. Wilson v, Mar 28 2023

Keywords

Comments

Analogous to the array in A036262 that arises from Gilbreath's conjecture.
Wayman Eduardo Luy and Robert G. Wilson v conjecture (see A361897) that the leading terms in the array are always 0 or 1.

Examples

			The array begins:
  1 2 2 3 2 4 2 4 3 4 2 6 2 4 4 5 2 6 2 6 4 4 2 8 3 4 4 6 2 8 2 6 4 4 4 9 2 4 4 ...
  1 0 1 1 2 2 2 1 1 2 4 4 2 0 1 3 4 4 4 2 0 2 6 5 1 0 2 4 6 6 4 2 0 0 5 7 2 0 4 ...
  1 1 0 1 0 0 1 0 1 2 0 2 2 1 2 1 0 0 2 2 2 4 1 4 1 2 2 2 0 2 2 2 0 5 2 5 2 4 2 ...
  0 1 1 1 0 1 1 1 1 2 2 0 1 1 1 1 0 2 0 0 2 3 3 3 1 0 0 2 2 0 0 2 5 3 3 3 2 2 2 ...
  1 0 0 1 1 0 0 0 1 0 2 1 0 0 0 1 2 2 0 2 1 0 0 2 1 0 2 0 2 0 2 3 2 0 0 1 0 0 2 ...
  1 0 1 0 1 0 0 1 1 2 1 1 0 0 1 1 0 2 2 1 1 0 2 1 1 2 2 2 2 2 1 1 2 0 1 1 0 2 0 ...
  1 1 1 1 1 0 1 0 1 1 0 1 0 1 0 1 2 0 1 0 1 2 1 0 1 0 0 0 0 1 0 1 2 1 0 1 2 2 2 ...
  0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 ...
  0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 2 ...
  0 0 1 1 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 1 1 0 2 0 ...
  0 1 0 1 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 1 0 1 2 2 1 ...
  1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 1 1 1 1 0 1 1 ...
  ...
The first few antidiagonals are
  1
  1 2
  1 0 2
  0 1 1 3
  1 1 0 1 2
  1 0 1 1 2 4
  1 0 0 1 0 2 2
  0 1 1 1 0 0 2 4
  ...
		

Crossrefs

Programs

  • Maple
    A362450 := proc(n,k)
        option remember ;
        if n = 1 then
            numtheory[tau](k) ;
        else
            abs( procname(n-1,k+1)-procname(n-1,k)) ;
        end if;
    end proc:
    seq(seq(A362450(d-k,k),k=1..d-1),d=2..14) ; # R. J. Mathar, May 05 2023
  • Mathematica
    A362450[dmax_]:=With[{d=Reverse[NestList[Abs[Differences[#]]&,DivisorSigma[0,Range[dmax]],dmax-1]]},Array[Diagonal[d,#]&,dmax,1-dmax]];A362450[20] (* Generates 20 antidiagonals  *) (* Paolo Xausa, May 07 2023 *)

Formula

T(1,k) = A000005(k). T(n,k) = |T(n-1,k+1)-T(n-1,k)| for n>=2. - R. J. Mathar, May 10 2023