A362451 Gilbreath transform of {sigma(i), i >= 1} (cf. A000203).
1, 2, 1, 1, 1, 2, 1, 0, 0, 1, 0, 4, 0, 3, 0, 2, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 68, 0, 14, 0, 7, 0, 2, 0, 21, 1, 8, 1, 9, 1, 0, 1, 18, 0, 7, 0, 2, 0, 1, 0, 13, 1, 1, 1, 2, 1, 1
Offset: 1
Keywords
Examples
We give two examples. (1) For the Gilbreath transform of the sequence of primes (cf. A000040), the array A is given in A036262. The Gilbreath transform begins {2, 1, 1, 1, 1, ...}, and the famous Gilbreath conjecture is that every term after the initial 2 is equal to 1. (2) For the Gilbreath transform of {tau(i), i >= 1} (cf. A000005), the array A is given in A362450, and the Gilbreath transform is given in A361897. The authors of the latter sequence conjecture that its terms are just 0's and 1's. See A362452 for a further example.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..60000
- N. J. A. Sloane, Maple code for Gilbreath transform and related arrays
- N. J. A. Sloane, Transforms
- N. J. A. Sloane, New Gilbreath Conjectures, Sum and Erase, Dissecting Polygons, and Other New Sequences, Doron Zeilberger's Exper. Math. Seminar, Rutgers, Sep 14 2023: Video, Slides, Updates. (Mentions this sequence.)
- Paolo Xausa, Table of n, a(n) for n = 1..1000000
- Paolo Xausa, Logarithmic scatterplot for n = 1..1100000
- Index entries for sequences related to Gilbreath conjecture and transform
Crossrefs
Programs
-
Maple
# To get M terms of the Gilbreath transform of s, assuming offset is 1: GT := proc(s,M) local G,u,i; u := [seq(s[i],i=1..M)]; G:=[s[1]]; for i from 1 to M-1 do u:=[seq(abs(u[i+1]-u[i]),i=1..nops(u)-1)]; G:=[op(G),u[1]]; od: G; end; # For the present sequence: GT(numtheory[sigma],150); # See link for a more comprehensive Maple program
-
Mathematica
A362451[nmax_]:=Module[{d=DivisorSigma[1,Range[nmax]]},Join[{1},Table[First[d=Abs[Differences[d]]],nmax-1]]];A362451[200] (* Paolo Xausa, May 07 2023 *)
-
PARI
lista(nn) = my(v=apply(sigma, [1..nn]), list = List(), nb=nn); listput(list, v[1]); for (n=2, nn, nb--; my(w = vector(nb, k, abs(v[k+1]-v[k]))); listput(list, w[1]); v = w; ); Vec(list); lista(200) \\ (based on PARI program in A361897)
Extensions
More than the usual number of terms are displayed in order to go out beyond the long initial 0,1 subsequence.
Comments