cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A362452 Gilbreath transform of {sigma(i)-i, i >= 1} (see sum of aliquot parts, A001065).

Original entry on oeis.org

0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 62, 0, 12, 0, 3, 0, 2, 0, 25, 1
Offset: 1

Views

Author

N. J. A. Sloane, May 03 2023

Keywords

Comments

See A362451 for further information.
The first 50000 terms of the present sequence suggest that the terms are usually 0's and 1's, except for occasional "geysers". See A362458, A362459.
[It would be nice to have plots of larger numbers of initial terms.]

Crossrefs

Programs

  • Maple
    # To get M terms of the Gilbreath transform of s:
    GT := proc(s,M) local G,u,i;
    u := [seq(s(i),i=1..M)];
    G:=[s(1)];
    for i from 1 to M-1 do
    u:=[seq(abs(u[i+1]-u[i]),i=1..nops(u)-1)];
    G:=[op(G),u[1]]; od:
    G;
    end;
    # For the present sequence:
    aliq := proc(n) numtheory[sigma](n) - n; end;
    GT(aliq,150);
  • Mathematica
    A362452[nmax_]:=Module[{d=DivisorSigma[1,Range[nmax]]-Range[nmax]},Join[{0},Table[First[d=Abs[Differences[d]]],nmax-1]]];A362452[200] (* Paolo Xausa, May 07 2023 *)
  • PARI
    f(n) = sigma(n) - n
    lista(nn) = my(v=apply(f, [1..nn]), list = List(), nb=nn); listput(list, v[1]); for (n=2, nn, nb--; my(w = vector(nb, k, abs(v[k+1]-v[k]))); listput(list, w[1]); v = w; ); Vec(list);
    lista(200)

Extensions

More than the usual number of terms are displayed in order to go out beyond the long initial 0,1 subsequence.

A362459 Indices of records in A362452.

Original entry on oeis.org

1, 2, 120, 4200, 14400, 17640, 243360, 408240, 669240
Offset: 1

Views

Author

N. J. A. Sloane, May 07 2023

Keywords

Crossrefs

Programs

  • Mathematica
    A362459[upto_]:=Module[{d=DivisorSigma[1,Range[upto]]-Range[upto],r=0,f},Join[{1},Table[If[(f=First[d=Abs[Differences[d]]])>r,r=f;n,Nothing],{n,2,upto}]]];A362459[10000] (* Paolo Xausa, May 07 2023 *)

Extensions

a(7)-a(9) from Rémy Sigrist, May 07 2023
Showing 1-2 of 2 results.