A362468 Number of distinct n-digit suffixes generated by iteratively multiplying an integer by 4, where the initial integer is 1.
3, 11, 52, 252, 1253, 6253, 31254, 156254, 781255, 3906255, 19531256, 97656256, 488281257, 2441406257, 12207031258, 61035156258, 305175781259, 1525878906259, 7629394531260, 38146972656260, 190734863281261, 953674316406261, 4768371582031262, 23841857910156262
Offset: 1
Examples
For n = 2, we begin with 1, iteratively multiply by 4 and count the number of terms before the last 2 digits begin to repeat. We obtain 1, 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144, 1048576, ... . The next term is 4194304, which repeats the last 2 digits 04. Thus, the number of distinct terms is a(2) = 11.
Links
- Wikipedia, Multiplicative order
- Index entries for linear recurrences with constant coefficients, signature (6,-4,-6,5).
Programs
-
PARI
a(n)=(n+1)\2*2*5^(n-1) \\ Charles R Greathouse IV, Apr 28 2023
-
Python
def a(n): s, x, M = set(), 1, 10**n while x not in s: s.add(x); x = (x<<2)%M return len(s), x print([a(n) for n in range(1, 11)]) # Michael S. Branicky, Apr 22 2023
-
Python
def A362468(n): return (n+1>>1)+(5**(n-1)<<1) # Chai Wah Wu, Apr 24 2023
Formula
a(n) = t + k, where t = A004526(n+1) and k = A020699(n), since 4^t == 4^(t+k) (mod 10^n). Here, t is the "transient" portion and k = ord_5^n(4), the multiplicative order of 4 modulo 5^n, is the period of the orbit. - Michael S. Branicky, Apr 22 2023
Extensions
a(13) and beyond from Michael S. Branicky, Apr 22 2023
Comments