This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362472 #22 Feb 16 2025 08:34:05 %S A362472 1,1,1,7,97,961,10201,177241,3801505,80718625,1887205681,52896262321, %T A362472 1648697978401,54216677033377,1928791931034697,75326014326206281, %U A362472 3159713152034201281,140373558362282197441,6632746205445950124385,333591744669464008432225 %N A362472 E.g.f. satisfies A(x) = exp(x + x^3 * A(x)^3). %H A362472 Seiichi Manyama, <a href="/A362472/b362472.txt">Table of n, a(n) for n = 0..384</a> %H A362472 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>. %F A362472 E.g.f.: exp(x - LambertW(-3*x^3 * exp(3*x))/3) = ( -LambertW(-3*x^3 * exp(3*x))/(3*x^3) )^(1/3). %F A362472 a(n) = n! * Sum_{k=0..floor(n/3)} (3*k+1)^(n-2*k-1) / (k! * (n-3*k)!). %o A362472 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-3*x^3*exp(3*x))/3))) %Y A362472 Column k=6 of A362490. %Y A362472 Cf. A143768, A349562, A362473. %Y A362472 Cf. A362392, A362481. %K A362472 nonn %O A362472 0,4 %A A362472 _Seiichi Manyama_, Apr 21 2023