cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362473 E.g.f. satisfies A(x) = exp(x + x^4 * A(x)^4).

This page as a plain text file.
%I A362473 #13 Feb 16 2025 08:34:05
%S A362473 1,1,1,1,25,601,9001,105001,1231441,24146641,740098801,22443260401,
%T A362473 607394284201,16102368745321,497289446373721,19072987370400601,
%U A362473 806135144596672801,33945128330918599201,1426006261391514829921,63478993000497055809121
%N A362473 E.g.f. satisfies A(x) = exp(x + x^4 * A(x)^4).
%H A362473 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A362473 E.g.f.: exp(x - LambertW(-4*x^4 * exp(4*x))/4) = ( -LambertW(-4*x^4 * exp(4*x))/(4*x^4) )^(1/4).
%F A362473 a(n) = n! * Sum_{k=0..floor(n/4)} (4*k+1)^(n-3*k-1) / (k! * (n-4*k)!).
%o A362473 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-4*x^4*exp(4*x))/4)))
%Y A362473 Cf. A143768, A349562, A362472.
%Y A362473 Cf. A362393, A362482, A362491.
%K A362473 nonn
%O A362473 0,5
%A A362473 _Seiichi Manyama_, Apr 21 2023