cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362477 E.g.f. satisfies A(x) = exp(x + x^3/6 * A(x)^3).

This page as a plain text file.
%I A362477 #16 Feb 16 2025 08:34:05
%S A362477 1,1,1,2,17,161,1351,12391,153385,2388905,40060781,708351821,
%T A362477 13861042801,305141790097,7339275555067,188198812659131,
%U A362477 5143808931521681,150713978752271441,4718460264313196665,156524510548008965305,5474266337362911068161
%N A362477 E.g.f. satisfies A(x) = exp(x + x^3/6 * A(x)^3).
%H A362477 Seiichi Manyama, <a href="/A362477/b362477.txt">Table of n, a(n) for n = 0..408</a>
%H A362477 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A362477 E.g.f.: exp(x - LambertW(-x^3/2 * exp(3*x))/3) = ( -2 * LambertW(-x^3/2 * exp(3*x))/x^3 )^(1/3).
%F A362477 a(n) = n! * Sum_{k=0..floor(n/3)} (1/6)^k * (3*k+1)^(n-2*k-1) / (k! * (n-3*k)!).
%o A362477 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-x^3/2*exp(3*x))/3)))
%Y A362477 Column k=1 of A362490.
%Y A362477 Cf. A362381.
%K A362477 nonn
%O A362477 0,4
%A A362477 _Seiichi Manyama_, Apr 21 2023