cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362479 E.g.f. satisfies A(x) = exp(x + x^3/2 * A(x)^3).

This page as a plain text file.
%I A362479 #17 Feb 16 2025 08:34:05
%S A362479 1,1,1,4,49,481,4471,57751,1036393,19939753,399150541,9082285741,
%T A362479 237719388721,6759766432849,204408880370059,6672899023062091,
%U A362479 236080878357745681,8926817568378582481,357421258163575234873,15158257732928974255993
%N A362479 E.g.f. satisfies A(x) = exp(x + x^3/2 * A(x)^3).
%H A362479 Seiichi Manyama, <a href="/A362479/b362479.txt">Table of n, a(n) for n = 0..393</a>
%H A362479 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A362479 E.g.f.: exp(x - LambertW(-3*x^3/2 * exp(3*x))/3) = ( -2 * LambertW(-3*x^3/2 * exp(3*x))/(3*x^3) )^(1/3).
%F A362479 a(n) = n! * Sum_{k=0..floor(n/3)} (1/2)^k * (3*k+1)^(n-2*k-1) / (k! * (n-3*k)!).
%o A362479 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-3*x^3/2*exp(3*x))/3)))
%Y A362479 Column k=3 of A362490.
%Y A362479 Cf. A362391.
%K A362479 nonn
%O A362479 0,4
%A A362479 _Seiichi Manyama_, Apr 21 2023