This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362484 #10 Apr 22 2023 11:38:54 %S A362484 1,2,3,6,4,8,5,10,7,12,14,24,9,15,18,30,11,22,13,20,21,26,40,42,16,32, %T A362484 17,27,34,54,19,28,38,56,33,66,23,46,25,35,36,39,50,60,70,72,78,120, %U A362484 29,58,31,44,48,62,88,96,45,51,90,102,37,52,57,74,84,104,114,168 %N A362484 Irregular table read by rows in which the n-th row consists of all the numbers m such that iphi(m) = n, where iphi is the infinitary totient function A091732. %H A362484 Amiram Eldar, <a href="/A362484/b362484.txt">Table of n, a(n) for n = 1..17858</a> (first 100000 rows) %e A362484 The table begins: %e A362484 n n-th row %e A362484 -- ----------------------- %e A362484 1 1, 2; %e A362484 2 3, 6; %e A362484 3 4, 8; %e A362484 4 5, 10; %e A362484 5 %e A362484 6 7, 12, 14, 24; %e A362484 7 %e A362484 8 9, 15, 18, 30; %e A362484 9 %e A362484 10 11, 22; %e A362484 11 %e A362484 12 13, 20, 21, 26, 40, 42; %t A362484 powQ[n_] := n == 2^IntegerExponent[n, 2]; powfQ[n_] := Length[fact = FactorInteger[n]] == 1 && powQ[fact[[1, 2]]]; %t A362484 invIPhi[n_] := Module[{fct = f[n], sol}, sol = Times @@@ (1 + Select[fct, UnsameQ @@ # && AllTrue[# + 1, powfQ] &]); Sort@ Join[sol, 2*sol]]; invIPhi[1] = {1, 2}; %t A362484 Table[invIPhi[n], {n, 1, 36}] // Flatten (* using the function f by _T. D. Noe_ at A162247 *) %Y A362484 Cf. A091732, A162247, A362485 (row lengths). %Y A362484 Similar sequences: A032447, A361966, A362213, A362180. %K A362484 nonn,tabf %O A362484 1,2 %A A362484 _Amiram Eldar_, Apr 22 2023