cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362491 E.g.f. satisfies A(x) = exp(x + x^4/4 * A(x)^4).

This page as a plain text file.
%I A362491 #13 Feb 16 2025 08:34:05
%S A362491 1,1,1,1,7,151,2251,26251,273841,3281041,61021801,1518719401,
%T A362491 38199828151,905801252071,21398411003971,560160675014851,
%U A362491 17260034904184801,596005144436100001,21359751419836426321,773082506262449261521,28839945213850125032551
%N A362491 E.g.f. satisfies A(x) = exp(x + x^4/4 * A(x)^4).
%H A362491 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A362491 E.g.f.: exp(x - LambertW(-x^4 * exp(4*x))/4) = ( -LambertW(-x^4 * exp(4*x))/x^4 )^(1/4).
%F A362491 a(n) = n! * Sum_{k=0..floor(n/4)} (1/4)^k * (4*k+1)^(n-3*k-1) / (k! * (n-4*k)!).
%o A362491 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-x^4*exp(4*x))/4)))
%Y A362491 Cf. A362474, A362478.
%Y A362491 Cf. A362473, A362494.
%K A362491 nonn
%O A362491 0,5
%A A362491 _Seiichi Manyama_, Apr 22 2023