This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362494 #12 Feb 16 2025 08:34:05 %S A362494 1,1,1,1,-5,-149,-2249,-26249,-251159,-1443959,21646801,1209344401, %T A362494 35457894451,817789456771,14796993881671,137893562065351, %U A362494 -4661597156689199,-372730180154530799,-16419790692323174879,-559989133713039523679,-14492546886670841884949 %N A362494 E.g.f. satisfies A(x) = exp(x - x^4/4 * A(x)^4). %H A362494 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>. %F A362494 E.g.f.: exp(x - LambertW(x^4 * exp(4*x))/4) = ( LambertW(x^4 * exp(4*x))/x^4 )^(1/4). %F A362494 a(n) = n! * Sum_{k=0..floor(n/4)} (-1/4)^k * (4*k+1)^(n-3*k-1) / (k! * (n-4*k)!). %o A362494 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(x^4*exp(4*x))/4))) %Y A362494 Cf. A362492, A362493. %Y A362494 Cf. A362491. %K A362494 sign %O A362494 0,5 %A A362494 _Seiichi Manyama_, Apr 22 2023