cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362494 E.g.f. satisfies A(x) = exp(x - x^4/4 * A(x)^4).

This page as a plain text file.
%I A362494 #12 Feb 16 2025 08:34:05
%S A362494 1,1,1,1,-5,-149,-2249,-26249,-251159,-1443959,21646801,1209344401,
%T A362494 35457894451,817789456771,14796993881671,137893562065351,
%U A362494 -4661597156689199,-372730180154530799,-16419790692323174879,-559989133713039523679,-14492546886670841884949
%N A362494 E.g.f. satisfies A(x) = exp(x - x^4/4 * A(x)^4).
%H A362494 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A362494 E.g.f.: exp(x - LambertW(x^4 * exp(4*x))/4) = ( LambertW(x^4 * exp(4*x))/x^4 )^(1/4).
%F A362494 a(n) = n! * Sum_{k=0..floor(n/4)} (-1/4)^k * (4*k+1)^(n-3*k-1) / (k! * (n-4*k)!).
%o A362494 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(x^4*exp(4*x))/4)))
%Y A362494 Cf. A362492, A362493.
%Y A362494 Cf. A362491.
%K A362494 sign
%O A362494 0,5
%A A362494 _Seiichi Manyama_, Apr 22 2023