This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362505 #6 Apr 24 2023 01:31:39 %S A362505 0,1,4,9,11,16,25,36,44,49,64,81,99,100,111,121,144,169,176,196,225, %T A362505 252,256,275,289,324,361,396,400,403,441,444,484,529,539,574,576,625, %U A362505 676,704,729,736,765,784,841,891,900,961,976,999,1000,1008,1010,1024 %N A362505 Nonnegative numbers of the form x*y where x and y have the same set of decimal digits. %C A362505 Repunits (A002275), squares (A000290) and A330898 are subsequences. %e A362505 The first terms, alongside an appropriate factorization, are: %e A362505 n a(n) x y %e A362505 -- ---- -- --- %e A362505 1 0 0 0 %e A362505 2 1 1 1 %e A362505 3 4 2 2 %e A362505 4 9 3 3 %e A362505 5 11 1 11 %e A362505 6 16 4 4 %e A362505 7 25 5 5 %e A362505 8 36 6 6 %e A362505 9 44 2 22 %e A362505 10 49 7 7 %e A362505 11 64 8 8 %e A362505 12 81 9 9 %e A362505 13 99 3 33 %e A362505 14 100 10 10 %e A362505 15 111 1 111 %o A362505 (PARI) is(n) = { if (n==0, 1, fordiv (n, x, if (Set(digits(x))==Set(digits(n/x)), return (1))); return (0)); } %o A362505 (Python) %o A362505 from sympy import divisors %o A362505 def ok(n): return n == 0 or any(set(str(x)) == set(str(n//x)) for x in divisors(n)) %o A362505 print([k for k in range(1025) if ok(k)]) # _Michael S. Branicky_, Apr 23 2023 %Y A362505 Cf. A000290, A002275, A086066, A330898, A362506 (least x's). %K A362505 nonn,base %O A362505 1,3 %A A362505 _Rémy Sigrist_, Apr 23 2023