A362506 a(n) is the least x >= 0 such that A362505(n) = x * y for some y with the same set of decimal digits as x.
0, 1, 2, 3, 1, 4, 5, 6, 2, 7, 8, 9, 3, 10, 1, 11, 12, 13, 4, 14, 15, 12, 16, 5, 17, 18, 19, 6, 20, 13, 21, 2, 22, 23, 7, 14, 24, 25, 26, 8, 27, 23, 15, 28, 29, 9, 30, 31, 16, 3, 10, 24, 10, 32, 33, 10, 1, 34, 17, 11, 35, 36, 25, 12, 37, 38, 12, 18, 34, 12, 13
Offset: 1
Examples
The first terms, alongside the corresponding y and A362505(n), are: n a(n) y A362505(n) -- ---- --- ---------- 1 0 0 0 2 1 1 1 3 2 2 4 4 3 3 9 5 1 11 11 6 4 4 16 7 5 5 25 8 6 6 36 9 2 22 44 10 7 7 49 11 8 8 64 12 9 9 81 13 3 33 99 14 10 10 100 15 1 111 111
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
- Rémy Sigrist, Scatterplot of the first 100000 terms
Crossrefs
Cf. A362505.
Programs
-
PARI
{ print1(0); for (k = 1, 1469, fordiv (k, x, if (Set(digits(x)) == Set(digits(k/x)), print1 (", "x); break))) }
-
Python
from sympy import divisors from itertools import count def agen(): # generator of terms yield 0 for n in count(1): for x in divisors(n): if set(str(x)) == set(str(n//x)): yield x break print(list(islice(agen(), 71))) # Michael S. Branicky, Apr 23 2023