This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362516 #21 Mar 27 2025 02:23:40 %S A362516 1,5,51,293,1383,6017,25315,104941,431775,1768377,7218555,29388325, %T A362516 119381239,484031537,1959295251,7919693789,31972642767,128937189161, %U A362516 519476334379,2091181293589,8412008183079,33816433653921,135865503379395,545598121631437,2190000348372223 %N A362516 Number of vertex cuts in the n-gear graph. %C A362516 Extended to n = 1 using formula/recurrence. %H A362516 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GearGraph.html">Gear Graph</a> %H A362516 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/VertexCut.html">Vertex Cut</a> %H A362516 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (10,-34,44,-13,-14,8). %F A362516 a(n) = 2^(2*n+1) - 1 - A286188(n). - _Pontus von Brömssen_, Apr 23 2023 %F A362516 a(n) = 2*(4^n - 1) + 2*n - 4*n^2 - ((3 - sqrt(17))/2)^n - ((3 + sqrt(17))/2)^n. %F A362516 a(n) = 10*a(n-1)-34*a(n-2)+44*a(n-3)-13*a(n-4)-14*a(n-5)+8*a(n-6). %F A362516 G.f.: x*(-1 + 5*x - 35*x^2 + 91*x^3 + 20*x^4 + 16*x^5)/((-1 + x)^3*(1 - 7*x + 10*x^2 + 8*x^3)). %F A362516 a(n) = -A206776(n)+2*4^n-2-4*n^2+2*n. - _R. J. Mathar_, Feb 18 2024 %t A362516 Table[2 (4^n - 1) + 2 n - 4 n^2 - (1/2 (3 - Sqrt[17]))^n - (1/2 (3 + Sqrt[17]))^n, {n, 20}] // Expand %t A362516 LinearRecurrence[{10, -34, 44, -13, -14, 8}, {1, 5, 51, 293, 1383, 6017}, 20] %t A362516 CoefficientList[Series[(-1 + 5 x - 35 x^2 + 91 x^3 + 20 x^4 + 16 x^5)/((-1 + x)^3 (1 - 7 x + 10 x^2 + 8 x^3)), {x, 0, 20}], x] %Y A362516 Cf. A286188. %K A362516 nonn,easy %O A362516 1,2 %A A362516 _Eric W. Weisstein_, Apr 23 2023 %E A362516 More terms (based on data in A286188) from _Pontus von Brömssen_, Apr 23 2023