This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362521 #15 Feb 16 2025 08:34:05 %S A362521 1,30,323,3110,27777,237498,1977439,16202990,131490509,1060894002, %T A362521 8529819531,68439823942,548461371993,4392080943978,35156984457463, %U A362521 281349668446430,2251228221924645,18011798305060578,144103388698943651,1152868080218482102,9223130638279472433 %N A362521 Number of vertex cuts in the n-web graph. %C A362521 Sequence extended to n=1 using formula/recurrence. %H A362521 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/VertexCut.html">Vertex Cut</a> %H A362521 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/WebGraph.html">Web Graph</a> %H A362521 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (20, -146, 480, -657, 60, 660, -400, -144, 128). %F A362521 a(n) = 2^(3*n) - 1 - A286187(n). - _Pontus von Brömssen_, Apr 23 2023 %F A362521 a(n) = 20*a(n-1)-146*a(n-2)+480*a(n-3)-657*a(n-4)+60*a(n-5)+660*a(n-6)-400*a(n-7)-144*a(n-8)+128*a(n-9). %F A362521 G.f.: x*(-1 - 10*x + 131*x^2 - 550*x^3 + 1008*x^4 - 628*x^5 + 128*x^6 - 448*x^7 + 384*x^8)/((-1 + 8*x)*(-1 + 6*x - 7*x^2 - 2*x^3 + 4*x^4)^2). %t A362521 LinearRecurrence[{20, -146, 480, -657, 60, 660, -400, -144, 128}, {1, 30, 323, 3110, 27777, 237498, 1977439, 16202990, 131490509}, 20] %t A362521 CoefficientList[Series[(-1 - 10 x + 131 x^2 - 550 x^3 + 1008 x^4 - 628 x^5 + 128 x^6 - 448 x^7 + 384 x^8)/((-1 + 8 x) (-1 + 6 x - 7 x^2 - 2 x^3 + 4 x^4)^2), {x, 0, 20}], x] %t A362521 With[{r = 4 + 2 # - 5 #^2 + #^3 &}, Table[8^n + n/2 - n RootSum[r, -494 #^n + 12 #1^(n + 1) + 35 #^(n + 2) &]/458 - RootSum[r, #^n &] - 1, {n, 20}]] %Y A362521 Cf. A286187. %K A362521 nonn %O A362521 1,2 %A A362521 _Eric W. Weisstein_, Apr 23 2023 %E A362521 More terms (based on data in A286187) from _Pontus von Brömssen_, Apr 23 2023