A362531 The smallest integer m such that m mod 2k >= k for k = 1, 2, 3, ..., n.
1, 3, 3, 15, 15, 47, 95, 95, 287, 335, 1199, 1199, 1295, 2015, 2879, 2879, 2879, 2879, 2879, 2879, 2879, 43199, 211679, 211679, 211679, 211679, 211679, 211679, 211679, 211679, 3084479, 3084479, 3084479, 3084479, 3084479, 3084479, 302702399, 469909439
Offset: 1
Keywords
Examples
a(3) = 3 since 3 mod 2 = 1, 3 mod 4 = 3 >= 2, 3 mod 6 = 3 (but 3 mod 8 = 3 < 4) while 1 mod 4 = 1 < 2, 2 mod 2 = 0 < 1.
Links
- Tomohiro Yamada, Fast Python program, the original program written by nazratt2.
Crossrefs
Cf. A053664.
Programs
-
PARI
a(n)={my(m);m=1;while(vecmin(vector(n,j,(m%(2*j))/j))<1,m=m+1);m}
-
PARI
n=1;for(m=1,10^9,while(vecmin(vector(n,j,(m%(2*j))/j))>=1,print(n," ",m);n=n+1))
-
Python
def A362531(n): m = 1 while True: for k in range(n,0,-1): if (l:=k-m%(k<<1))>0: break else: return m m += l # Chai Wah Wu, Jun 21 2023
Extensions
a(37)-a(38) from Yifan Xie, Apr 24 2023
Comments